A (12TET major/minor) key tracker based on a pitch class profile of energy across FFT bins and matching this to templates for major and minor scales in all transpositions. It assumes a 440 Hz concert A reference. Output is 0-11 C major to B major, 12-23 C minor to B minor.
chain |
[fft] Audio input to track. This must have been pre-analysed by a 4096 size FFT. No other FFT sizes are valid except as noted below. |
keydecay |
[sk] Number of seconds for the influence of a window on the final key decision to decay by 40dB (to 0.01 its original value). |
chromaleak |
[sk] Each frame, the chroma values are set to the previous value multiplied by the chromadecay. 0.0 will start each frame afresh with no memory. |
// The following files are test materials on my machine; you will subsitute your own filenames here
// A major
d = Buffer.read(s,"/Volumes/data/stevebeattrack/samples/100.wav");
// F major; hard to track!
d = Buffer.read(s,"/Volumes/data/stevebeattrack/samples/115.wav");
// straight forward since no transients; training set from MIREX2006
// 01 = A major
// 57 = b minor
// 78 e minor
// 08 Bb major
d = Buffer.read(s, "/Users/nickcollins/Desktop/ML/training_wav/78.wav")
(
{
var in, fft, resample;
var key, transientdetection;
in = PlayBuf.ar(1, d, BufRateScale.kr(d), 1, 0, 1);
// With standard hop of half FFT size = 2048 samples
fft = FFT(LocalBuf(4096), in); // for sampling rates 44100 and 48000
fft = FFT(LocalBuf(8192), in); // for sampling rates 88200 and 96000
key = KeyTrack.kr(fft, 2.0, 0.5);
key.poll;
Pan2.ar(in)
}.play
)
xxxxxxxxxx
// alternating major and minor chords as a test
(
{
var in, fft, resample;
var key, transientdetection;
in = Mix(SinOsc.ar((60 + [0, MouseX.kr(3, 4).round(1), 7]).midicps, 0, 0.1));
// major dom 7 and minor 7; major keys preferred here
//in = Mix(SinOsc.ar((60 + (MouseY.kr(0, 11).round(1.0)) + [0, MouseX.kr(3, 4).round(1), 7, 10]).midicps, 0, 0.1));
fft = FFT(LocalBuf(4096), in); // for sampling rates 44100 and 48000
key = KeyTrack.kr(fft);
key.poll;
Pan2.ar(in)
}.play
)
xxxxxxxxxx
// Nice to hear what KeyTrack thinks:
d = Buffer.read(s, "/Users/nickcollins/Desktop/ML/training_wav/78.wav")
(
{
var in, fft, resample, chord, rootnote, sympath;
var key, transientdetection;
in = PlayBuf.ar(1, d, BufRateScale.kr(d), 1, 0, 1);
fft = FFT(LocalBuf(4096), in); // for sampling rates 44100 and 48000
key = KeyTrack.kr(fft, 2.0, 0.5);
key.poll;
key = Median.kr(101, key); // Remove outlier wibbles
chord = if(key < 12, #[0, 4, 7], #[0, 3, 7]);
rootnote = if(key < 12, key, key-12) + 60;
sympath = SinOsc.ar((rootnote + chord).midicps, 0, 0.4).mean;
Pan2.ar(in, -0.5) + Pan2.ar(sympath, 0.5)
}.play
)
xxxxxxxxxx
/*
Research Notes:
See the MIREX2006 audio key tracking competition and Emilia Gomez's PhD thesis, Tonal Description of Music Audio Signals
The following code was used to create the datasets for the UGen, and would be the basis of extensions
Need one set of bin data for 44100 and one for 48000
KeyTrack calculations, need to make arrays of FFT bins and weights for each chromatic tone.
greater resolution, 4096 FFT, avoid lower octaves, too messy there
60*6*2 output arrays
*/
(
var fftN, fftBins, binsize;
var midinotes;
var sr;
var wtlist, binlist;
sr = 48000; //44100;
fftN = 4096;
fftBins = fftN.div(2);
binsize = sr / fftN;
midinotes = (33..92); // 60 notes, 55 Hz up to 1661.2187903198 Hz
wtlist = List[];
binlist = List[];
// for each note have six harmonic locations
midinotes.do{ |note|
var freq, whichbin, lowerbin, prop;
freq = note.midicps;
6.do{|j|
var partialfreq, partialamp;
partialamp = 1.0 / (j + 1);
partialfreq = freq * (j + 1);
whichbin = partialfreq / binsize;
lowerbin = whichbin.asInteger;
prop = 1.0 - (whichbin - lowerbin);
binlist.add(lowerbin).add(lowerbin + 1);
wtlist.add(prop * partialamp).add((1.0 - prop) * partialamp);
};
};
Post << (binlist) << nl<< nl;
Post << (wtlist) << nl<< nl;
binlist.size.postln;
wtlist.size.postln;
)