A non-band-limited gaussian function oscillator. Output ranges from minval to 1.
LFGauss implements the formula:
f(x) = exp(squared(x - iphase) / (-2.0 * squared(width)))
where x is to vary in the range -1 to 1 over the period dur. minval is the initial value at -1.
duration |
duration of one full cycle ( for freq input: dur = 1 / freq ) |
width |
relative width of the bell. Best to keep below 0.25 when used as envelope. (default: 0.1) |
iphase |
initial offset (default: 0) |
loop |
if loop is > 0, UGen oscillates. Otherwise it calls doneAction after one cycle (default: 1) |
doneAction |
doneAction, which is evaluated after cycle completes (2 frees the synth, default: 0). See Done for more detail. |
Returns the lowest value for the given parameters, which is exp(1.0 / (-2.0 * squared(width)))
Scales the output to the given range. This can be convenient when using LFGauss as an envelope (see example below).
xxxxxxxxxx
{ LFGauss.ar(0.01, 0.6).range }.plot;
{ LFGauss.ar(0.01, 0.6) }.plot; // starts at about 0.25
s.boot ;
// a 0.1 second grain
{ LFGauss.ar(0.1, 0.12) }.plot(0.1);
// shifting left
{ LFGauss.ar(0.1, 0.12, -1, loop: 0) }.plot(0.1);
// moving further away from the center
{ LFGauss.ar(0.1, 0.12, 2) }.plot(0.2);
// several grains
{ LFGauss.ar(0.065, 0.12, 0, loop: 1) }.plot(0.3);
assuming iphase = 0:
minval for a given width: minval = exp(-1.0 / (2.0 * squared(width)))
width for a given minval: width = sqrt(-1.0 / log(minval))
width at half maximum (0.5): (2 * sqrt(2 * log(2)) * width) = ca. 2.355 * width
xxxxxxxxxx
// minval for a width of 0.1:
(exp(1 / (-2.0 * squared(0.1)))) // 2e-22
// maximum width for a beginning at -60dB:
// we want the beginning small enough to avoid clicks
sqrt(-1 / ( 2 * log(-60.dbamp))) // 0.269
// minval for width of 0.25
(exp(1 / (-2.0 * squared(0.25)))).ampdb // -70dB
// maximum is always 1:
{ LFGauss.ar(0.1, XLine.kr(1, 0.03, 1), 0, loop: 1) }.plot(1);
// a gauss curve in sclang:
(0..1000).normalize(-1, 1).collect(_.gaussCurve(1, 0, 0.1)).plot;
// rescale the function to the range 0..1
(
{
var width = XLine.kr(0.04, 1.0, 1);
var min = (exp(1.0 / (-2.0 * squared(width))));
var gauss = LFGauss.ar(0.1, width, loop: 1);
gauss.linlin(min, 1, 0, 1);
}.plot(1)
);
// range does the same implicitly
(
{
var width = XLine.kr(0.04, 1.0, 1);
LFGauss.ar(0.1, width, loop: 1).range(0, 1);
}.plot(1)
);
xxxxxxxxxx
// modulating duration
{ LFGauss.ar(XLine.kr(0.1, 0.001, 10), 0.03) * 0.2 }.play;
// modulating width, freq 60 Hz
{ LFGauss.ar(1/60, XLine.kr(0.1, 0.001, 10)) * 0.2 }.play;
// modulating both: x position is frequency, y is width factor.
// note the artefacts due to aliasing at high frequencies
{ LFGauss.ar(MouseX.kr(1/8000, 0.1, 1), MouseY.kr(0.001, 0.1, 1)) * 0.1 }.play;
// LFGauss as amplitude modulator
{ LFGauss.ar(MouseX.kr(1, 0.001, 1), 0.1) * SinOsc.ar(1000) * 0.1 }.play;
// modulate iphase
{ LFGauss.ar(0.001, 0.2, [0, MouseX.kr(-1, 1)]).sum * 0.2 }.scope;
// for very small width we are "approaching" a dirac function
{ LFGauss.ar(0.01, SampleDur.ir * MouseX.kr(10, 3000, 1)) * 0.2 }.play;
// dur and width can be modulated at audio rate
(
{ var dur = SinOsc.ar(MouseX.kr(2, 1000, 1) * [1, 1.1]).range(0.0006, 0.01);
var width = SinOsc.ar(0.5 * [1, 1.1]).range(0.01, 0.3);
LFGauss.ar(dur, width) * 0.2
}.play
);
// several frequencies and widths combined
(
{
var mod = LFGauss.ar(MouseX.kr(1, 0.07, 1), 1 * (MouseY.kr(1, 3) ** (-1..-6)));
var carr = SinOsc.ar(200 * (1.3 ** (0..5)));
(carr * mod).sum * 0.1
}.play;
)
// test spectrum
(
{
var son = LeakDC.ar(LFGauss.ar(0.005, 0.2));
BPF.ar(son * 3, MouseX.kr(60, 2000, 1), 0.05)
}.play;
)
-inf
and inf
. When using it as an envelope, it has to start at some smaller value, and it has an offset for this value. You can remove this offset by explicitly setting the range, e.g. to 0..1
(this is the default).xxxxxxxxxx
(
var freq = 1000;
var ncycles = 10;
var width = 0.25;
var dur = ncycles / freq;
{
var env = LFGauss.ar(dur, width, loop: 0, doneAction: Done.freeSelf).range;
var son = FSinOsc.ar(freq, 0.5pi, env);
son
}.plot(dur);
)
(
SynthDef(\gabor, { |out, i_freq = 440, i_sustain = 1, i_pan = 1, i_amp = 0.1, i_width = 0.25 |
var env = LFGauss.ar(i_sustain, i_width, loop: 0, doneAction: Done.freeSelf).range;
var son = FSinOsc.ar(i_freq, 0.5pi, env);
OffsetOut.ar(out, Pan2.ar(son, i_pan, i_amp));
}).add;
)
// modulating various parameters
(
Pdef(\x,
Pbind(
\instrument, \gabor,
\freq, Pbrown(step:0.01).linexp(0, 1, 100, 14000),
\dur, Pbrown().linexp(0, 1, 0.004, 0.02),
\legato, Pbrown(1, 3, 0.1, inf),
\pan, Pwhite() * Pbrown()
)
).play
)
// modulating width only
(
Pdef(\x,
Pbind(
\instrument, \gabor,
\freq, 1000,
\dur, 0.01,
\width, Pseg(Pseq([0.25, 0.002], inf), 10, \exp),
\legato, 2
)
).play
)
// compare with sine grain.
(
SynthDef(\gabor, { |out, i_freq = 440, i_sustain = 1, i_pan = 1, i_amp = 0.1, i_width=0.25 |
var env = EnvGen.ar(Env.sine(i_sustain * i_width), doneAction: Done.freeSelf);
var son = FSinOsc.ar(i_freq, 0.5pi, env);
OffsetOut.ar(out, Pan2.ar(son, i_pan, i_amp));
}).add;
)