Triggers generate grains from a buffer. Each grain has a Hanning envelope
(sin2(x) for x from 0 to π)
and can be panned over multichannel output.
numChannels |
The number of output channels. |
trigger |
At each trigger, the following arguments are sampled and used as the arguments of a new grain. A trigger occurs when a signal changes from non-positive to a positive value. If the trigger is audio rate then the grains will start with sample accuracy. |
bufnum |
The index of the buffer to use. It must be a one channel (mono) buffer. |
rate |
1.0 is normal, 2.0 is one octave up, 0.5 is one octave down -1.0 is backward normal rate… etc. |
centerPos |
The position in the buffer in seconds at which the grain envelope will reach maximum amplitude. |
dur |
Duration of the grain in seconds. |
pan |
determines where to pan the output.
|
amp |
Amplitude of the grain. |
interp |
1, 2, or 4. Determines whether the grain uses (1) no interpolation, (2) linear interpolation, or (4) cubic interpolation. |
s.boot;
b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav");
(
{
var trate, dur, rate;
trate = MouseY.kr(2,200,1);
dur = 4 / trate;
rate = Dseq([10, 1, 1, 0.5, 0.5, 0.2, 0.1], inf);
TGrains.ar(2, Impulse.ar(trate), b, rate, MouseX.kr(0,BufDur.kr(b)), dur, Dseq([-1, 1], inf), 0.1, 2);
}.scope(zoom: 4);
)
(
{
var trate, dur, clk, pos, pan;
trate = MouseY.kr(8,120,1);
dur = 12 / trate;
clk = Impulse.kr(trate);
pos = MouseX.kr(0,BufDur.kr(b)) + TRand.kr(0, 0.01, clk);
pan = WhiteNoise.kr(0.6);
TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)
// 4 channels
(
{
var trate, dur, clk, pos, pan;
trate = MouseY.kr(8,120,1);
dur = 12 / trate;
clk = Impulse.kr(trate);
pos = MouseX.kr(0,BufDur.kr(b)) + TRand.kr(0, 0.01, clk);
pan = WhiteNoise.kr(0.6);
TGrains.ar(4, clk, b, 1, pos, dur, pan, 0.1);
}.scope(4, zoom: 4);
)
(
{
var trate, dur, clk, pos, pan;
trate = MouseY.kr(8,120,1);
dur = 4 / trate;
clk = Dust.kr(trate);
pos = MouseX.kr(0,BufDur.kr(b)) + TRand.kr(0, 0.01, clk);
pan = WhiteNoise.kr(0.6);
TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)
(
{
var trate, dur, clk, pos, pan;
trate = LinExp.kr(LFTri.kr(MouseY.kr(0.1,2,1)),-1,1,8,120);
dur = 12 / trate;
clk = Impulse.ar(trate);
pos = MouseX.kr(0,BufDur.kr(b));
pan = WhiteNoise.kr(0.6);
TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)
(
{
var trate, dur, clk, pos, pan;
trate = 12;
dur = MouseY.kr(0.2,24,1) / trate;
clk = Impulse.kr(trate);
pos = MouseX.kr(0,BufDur.kr(b)) + TRand.kr(0, 0.01, clk);
pan = WhiteNoise.kr(0.6);
TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)
(
{
var trate, dur, clk, pos, pan;
trate = 100;
dur = 8 / trate;
clk = Impulse.kr(trate);
pos = Integrator.kr(BrownNoise.kr(0.001));
pan = WhiteNoise.kr(0.6);
TGrains.ar(2, clk, b, 1, pos, dur, pan, 0.1);
}.scope(zoom: 4);
)
(
{
var trate, dur, clk, pos, pan;
trate = MouseY.kr(1,400,1);
dur = 8 / trate;
clk = Impulse.kr(trate);
pos = MouseX.kr(0,BufDur.kr(b));
pan = WhiteNoise.kr(0.8);
TGrains.ar(2, clk, b, 2 ** WhiteNoise.kr(2), pos, dur, pan, 0.1);
}.scope(zoom: 4);
)
(
{
var trate, dur;
trate = MouseY.kr(2,120,1);
dur = 1.2 / trate;
TGrains.ar(2, Impulse.ar(trate), b, (1.2 ** WhiteNoise.kr(3).round(1)), MouseX.kr(0,BufDur.kr(b)), dur, WhiteNoise.kr(0.6), 0.1);
}.scope(zoom: 4);
)
// demand ugens as inputs
(
{
var trate, dur, z, d;
trate = MouseX.kr(1, 100, 1);
d = { Dwhite(0.1, 0.2, 1) };
z = {
Drand([Dgeom(0.1, 1 + d.value, Diwhite(20, 40)), Dgeom(1, 1 - d.value, Diwhite(20, 40))])
};
TGrains.ar(2,
Impulse.ar(trate),
bufnum: 10,
rate: Dseq([1, 1, z.value, 0.5, 0.5, 0.2, 0.1, 0.1, 0.1, 0.1], inf) * 2 + 1,
centerPos: Dseq(z.dup(8), inf),
dur: Dseq([1, d.value, 1, z.value, 0.5, 0.5, 0.1, z.value] * 2, inf) / trate,
pan: Dseq([1, 1, 1, 0.5, 0.2, 0.1, 0, 0, 0], inf) * 2 - 1,
amp: Dseq([1, 0, z.value, 0, 2, 1.0, 1, 0.1, 0.1], inf)
);
}.scope(zoom: 4);
)
b.free